题目内容

【题目】在锐角△ABC中,内角A、B、C所对的边分别是a、b、,若C=45°,b=4 ,sinB=
(1)求c的值;
(2)求sinA的值.

【答案】
(1)解:∵C=45°,b=4 ,sinB=

∴由正弦定理可得:c= = =5


(2)解:∵sinB= ,B为锐角,

∴cosB= =

sinA=sin(B+C)=sinBcosC+cosBsinC= × + × =


【解析】(1)由已知及正弦定理即可解得c的值.(2)由已知利用同角三角函数基本关系式可求cosB的值,利用三角形内角和定理,两角和的正弦函数公式即可计算求值得解.
【考点精析】利用正弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网