题目内容

5.已知等比数列f'(x)满足:an>0,a1=5,Sn为其前n项和,且20S1,S3,7S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log5a2+log5a4+…+log5a2n+2,求数列{$\frac{1}{b_n}$}的前n项和Tn

分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)利用对数的运算性质、“裂项求和”即可得出.

解答 解:(1)设数列{an}的公比为q,
∵20S1,S3,7S2成等差数列,
∴2S3=20S1+7S2
即$2({a_1}+{a_1}q+{a_1}{q^2})=20{a_1}+7({a_1}+{a_1}q)$,化简得2q2-5q-25=0,
解得:q=5或$q=-\frac{5}{2}$
∵an>0,∴$q=-\frac{5}{2}$不合舍去,
∴${a_n}={a_1}{q^{n-1}}=5×{5^{n-1}}={5^n}$.
(2)∵bn=log5a2+log5a4+…+log5a2n+2
=${log_5}({a_2}{a_4}…{a_{2n+2}})={log_5}{5^{2+4+…+2n+2}}=2+4+…+2(n+1)$,
=$\frac{(n+1)(2+2n+2)}{2}=(n+1)(n+2)$,
∴$\frac{1}{b_n}$=$\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}$=$(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2(n+2)}$.

点评 本题考查了等差数列与等比数列的通项公式、对数的运算性质、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网