ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì¦Ñ=$\frac{7}{cos¦È-2sin¦È}$£®ÉèPΪÇúÏßC1Éϵĵ㣬µãQµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{3¦Ð}{4}$£©£¬ÔòPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵÊÇ$\frac{8\sqrt{5}}{5}$£®·ÖÎö ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$°ÑÇúÏßC2µÄ¼«×ø±ê·½³Ì¦Ñ=$\frac{7}{cos¦È-2sin¦È}$£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£®ÓÉÓÚPΪÇúÏßC1Éϵĵ㣬¿ÉÉèPµã$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬µãQµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{3¦Ð}{4}$£©£¬»¯ÎªÖ±½Ç×ø±êQ£¨-4£¬4£©£®¿ÉµÃPQÖеãM£¨4cost-2£¬$\frac{3sint+4}{2}$£©£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð ½â£ºÇúÏßC1£º$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯Îª$\frac{{x}^{2}}{64}+\frac{{y}^{2}}{9}=1$£®
ÇúÏßC2µÄ¼«×ø±ê·½³Ì¦Ñ=$\frac{7}{cos¦È-2sin¦È}$£¬»¯Îªx-2y-7=0£®
¡ßPΪÇúÏßC1Éϵĵ㣬¿ÉÉèPµã$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
µãQµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{3¦Ð}{4}$£©£¬»¯ÎªÖ±½Ç×ø±êQ£¨-4£¬4£©£®
ÔòPQÖеãM£¨4cost-2£¬$\frac{3sint+4}{2}$£©µ½ÇúÏßC2ÉϵĵãµÄ¾àÀëd=$\frac{|4cost-2-£¨3sint+4£©-7|}{\sqrt{5}}$=$\frac{|5sin£¨t+¦Á£©+13|}{\sqrt{5}}$$¡Ý\frac{13-5}{\sqrt{5}}$=$\frac{8\sqrt{5}}{5}$£®µ±sin£¨t+¦Á£©=-1ʱȡµÈºÅ£®
¹Ê´ð°¸Îª£º$\frac{8\sqrt{5}}{5}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢ÍÖÔ²µÄ²ÎÊý·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | 2$\sqrt{5}$ | B£® | 2$\sqrt{6}$ | C£® | $\sqrt{34}$ | D£® | 2$\sqrt{7}$ |