题目内容
19.已知cos(θ+$\frac{π}{6}$)=$\frac{5}{13}$,θ∈(0,$\frac{π}{2}$),则cosθ=( )A. | $\frac{12+3\sqrt{3}}{26}$ | B. | $\frac{12+5\sqrt{3}}{26}$ | C. | $\frac{6+3\sqrt{3}}{13}$ | D. | $\frac{6+4\sqrt{3}}{13}$ |
分析 由同角三角函数的基本关系可得sin(θ+$\frac{π}{6}$),而cosθ=cos[(θ+$\frac{π}{6}$)-$\frac{π}{6}$]=$\frac{\sqrt{3}}{2}$cos(θ+$\frac{π}{6}$)+$\frac{1}{2}$sin(θ+$\frac{π}{6}$),代入计算可得.
解答 解:∵cos(θ+$\frac{π}{6}$)=$\frac{5}{13}$,θ∈(0,$\frac{π}{2}$),
∴sin(θ+$\frac{π}{6}$)=$\sqrt{1-(\frac{5}{13})^{2}}$=$\frac{12}{13}$,
∴cosθ=cos[(θ+$\frac{π}{6}$)-$\frac{π}{6}$]
=$\frac{\sqrt{3}}{2}$cos(θ+$\frac{π}{6}$)+$\frac{1}{2}$sin(θ+$\frac{π}{6}$)
=$\frac{\sqrt{3}}{2}×\frac{5}{13}$+$\frac{1}{2}×\frac{12}{13}$=$\frac{12+5\sqrt{3}}{26}$,
故选:B.
点评 本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.
练习册系列答案
相关题目
9.下列命题中,不正确的是( )
A. | $|\overrightarrow a|=\sqrt{{{(\overrightarrow a)}^2}}$ | B. | λ($\overrightarrow a$•$\overrightarrow b$)=$\overrightarrow a$•(λ$\overrightarrow b$) | C. | ($\overrightarrow a$-$\overrightarrow b$)$\overrightarrow c$=$\overrightarrow a$•$\overrightarrow c$-$\overrightarrow b$•$\overrightarrow c$ | D. | $\overrightarrow a$与$\overrightarrow b$共线?$\overrightarrow a$•$\overrightarrow b$=$|{\overrightarrow a}||{\overrightarrow b}|$ |
10.设实数x,y满足约束条件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y≤2\end{array}$,则u=$\frac{x+y}{x}$的取值范围是( )
A. | $[{\frac{4}{3},\frac{3}{2}}]$ | B. | $[{\frac{1}{3},2}]$ | C. | $[{\frac{4}{3},3}]$ | D. | $[{\frac{3}{2},3}]$ |
11.已知定义在R上的奇函数f(x),满足f(x+4)=f(x),则f(8)的值为( )
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
9.sin$\frac{1}{2}$、cos$\frac{1}{2}$、tan$\frac{1}{2}$的大小关系为( )
A. | sin$\frac{1}{2}>cos\frac{1}{2}>tan\frac{1}{2}$ | B. | cos$\frac{1}{2}>tan\frac{1}{2}>sin\frac{1}{2}$ | ||
C. | tan$\frac{1}{2}>sin\frac{1}{2}>cos\frac{1}{2}$ | D. | tan$\frac{1}{2}>cos\frac{1}{2}>sin\frac{1}{2}$ |