题目内容
10、给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:
①若m?α,l∩α=A,点A∉m,则l与m不共面;
②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若l∥α,m∥β,α∥β,则l∥m;
④若l?α,m?α,l∩m=点A,l∥β,m∥β,则α∥β.
其中为真命题的是
①若m?α,l∩α=A,点A∉m,则l与m不共面;
②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若l∥α,m∥β,α∥β,则l∥m;
④若l?α,m?α,l∩m=点A,l∥β,m∥β,则α∥β.
其中为真命题的是
①②④
.分析:根据空间中异面直线的判定定理,线面垂直的判定方法,线线关系的判定方法,及面面平行的判定定理,我们对题目中的四个结论逐一进行判断,即可得到结论.
解答:解:m?α,l∩α=A,A∉m,则l与m异面,故①正确;
若m、l是异面直线,l∥α,m∥α,在则α内必然存在两相交直线a,b使a∥m,b∥l,
又由n⊥l,n⊥m,则n⊥a,n⊥b,∴n⊥α,故②正确;
若l∥α,m∥β,α∥β,则l与m可能平行与可能相交,也可能异面,故③错误;
若l?α,m?α,l∩m=A,l∥β,m∥β,则由面面平行的判定定理可得α∥β,故④正确;
故答案为:①②④
若m、l是异面直线,l∥α,m∥α,在则α内必然存在两相交直线a,b使a∥m,b∥l,
又由n⊥l,n⊥m,则n⊥a,n⊥b,∴n⊥α,故②正确;
若l∥α,m∥β,α∥β,则l与m可能平行与可能相交,也可能异面,故③错误;
若l?α,m?α,l∩m=A,l∥β,m∥β,则由面面平行的判定定理可得α∥β,故④正确;
故答案为:①②④
点评:本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中线面之间位置关系的定义、判定方法和性质定理,建立良好的空间想像能力是解答此类问题的关键.
练习册系列答案
相关题目