题目内容
【题目】设函数(其中,m,n为常数)
(1)当时,对有恒成立,求实数n的取值范围;
(2)若曲线在处的切线方程为,函数的零点为,求所有满足的整数k的和.
【答案】(1);(2).
【解析】
(1)由恒成立可知单调递增,由此得到,进而求得结果;
(2)由切线方程可确定和,从而构造方程求得;将化为,由可确定单调性,利用零点存在定理可求得零点所在区间,进而得到所有可能的取值,从而求得结果.
(1)当时,,,
当时,,,对任意的都成立,
在单调递增,,
要使得对有恒成立,则,解得:,
即的取值范围为.
(2),,解得:,
又,,,,
显然不是的零点,可化为,
令,则,在,上单调递增.
又,,,,
在,上各有个零点,在,上各有个零点,
整数的取值为或,整数的所有取值的和为.
【题目】为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:
实施项目 | 种植业 | 养殖业 | 工厂就业 | 服务业 |
参加用户比 | ||||
脱贫率 |
那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )
A.倍B.倍C.倍D.倍
【题目】在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.
(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?
城镇居民 | 农村居民 | 合计 | |
经常阅读 | 100 | 30 | |
不经常阅读 | |||
合计 | 200 |
(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |