题目内容
8.小明通过英语四级测试的概率为$\frac{3}{4}$,他连续测试3次,那么其中恰有一次获得通过的概率$\frac{9}{64}$.分析 由条件利用n次独立重复实验中恰好发生k次的概率计算公式求得恰有一次获得通过的概率.
解答 解:其中恰有一次获得通过的概率为${C}_{3}^{2}$•$\frac{3}{4}$•${(\frac{1}{4})}^{2}$=$\frac{9}{64}$,
故答案为:$\frac{9}{64}$.
点评 本题主要考查n次独立重复实验中恰好发生k次的概率,等可能事件的概率,属于基础题.
练习册系列答案
相关题目
18.若x<0,则5+4x+$\frac{3}{x}$的最大值为( )
A. | 5+4$\sqrt{3}$ | B. | 5±4$\sqrt{3}$ | C. | 5-4$\sqrt{3}$ | D. | 以上都不对 |
19.假设要抽查的某种品牌的850颗种子的发芽率,抽取60粒进行试验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数从7开始向右读,则检测的第3颗种子的编号为( )(下面的数据摘自随机数表第7行至第9行)
A. | 785 | B. | 555 | C. | 567 | D. | 199 |
16.已知不等式$\frac{x-3}{ax+b}$>0的解集为(-1,3),那么$\frac{{{a^3}-2{b^3}}}{{3{b^2}a}}$=( )
A. | 3 | B. | -$\frac{1}{3}$ | C. | -1 | D. | 1 |