题目内容

(2012•汕头一模)已知向量
m
=(-2sin(π-x),cosx)
n
=(
3
cosx,2sin(
π
2
-x))
,函数f(x)=1-
m
n

(1)求函数f(x)的解析式;
(2)当x∈[0,π]时,求f(x)的单调递增区间;
(3)说明f(x)的图象可以由g(x)=sinx的图象经过怎样的变换而得到.
分析:(1)直接利用向量的数量积,通过二倍角公式与两角差的正弦函数,化简函数我一个角的一个三角函数的形式,即可求函数f(x)的解析式;
(2)利用正弦函数的单调增区间求出函数的单调增区间与x∈[0,π]取交集,即可求f(x)的单调递增区间;
法二通过x的范围,求出2x-
π
6
的范围,然后利用函数的最值时的2x-
π
6
的值,即可得到单调增区间.
(3)利用左加右减,与伸缩变换的原则,直接说明f(x)的图象可以由g(x)=sinx的图象经过变换而得到.
解答:解:(1)∵
m
n
=-2sin(π-x)
3
cosx+2cosxsin(
π
2
-x)

=-2
3
sinxcosx+2cos2x=-
3
sin2x+cos2x+1
      2分
∴f(x)=1-
m
n
=
3
sin2x-cos2x
,…(3分)
∴f(x)=2sin(2x-
π
6
)
.…(4分)
(2)由-
π
2
+2kπ≤2x-
π
6
π
2
+2kπ
(k∈Z)

解得-
π
6
+kπ≤x≤
π
3
+kπ
(k∈Z)
,…(6分)
∵取k=0和1且x∈[0,π],得0≤x≤
π
3
6
≤x≤π

∴f(x)的单调递增区间为[0,
π
3
]
[
6
,π]
.…(8分)
法二:∵x∈[0,π],∴-
π
6
≤2x-
π
6
11π
6

∴由-
π
6
≤2x-
π
6
π
2
2
≤2x-
π
6
11π
6
,…(6分)
解得0≤x≤
π
3
6
≤x≤π

∴f(x)的单调递增区间为[0,
π
3
]
[
6
,π]
.…(8分)
(3)g(x)=sinx的图象可以经过下面三步变换得到f(x)=2sin(2x-
π
6
)
的图象:g(x)=sinx的图象向右平移
π
6
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍(纵坐标不变),最后把所得各点的纵坐标伸长为原来的2倍(横坐标不变),得到f(x)=2sin(2x-
π
6
)
的图象.…(14分)(每一步变换2分)
点评:本题借助向量的数量积的化简,求解函数的解析式,考查三角函数的基本性质,函数的图象的变换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网