题目内容

(2012•汕头一模)某商店经销一种洗衣粉,年销售总量为6000包,每包进价为2.8元,销售价为3.4元,全年分若干次进货,每次进货均为x包,已知每次进货的运输劳务费为62.5元,全年保管费为1.5x元.
(Ⅰ)将该商店经销洗衣粉一年的利润y(元)元表示为每次进货量x(包)的函数;
(Ⅱ)为使利润最大,每次应进货多少包?
分析:(1)由年销售总量为6000包,每次进货均为x包,可得进货次数,进而根据每包进价为2.8元,销售价为3.4元,计算出收入,由每次进货的运输劳务费为62.5元,全年保管费为1.5x元计算出成本,相减可得利润的表达式;
(II)由(1)中函数的解析式,由基本不等式,结合x的实际意义,可得使利润最大,每次应进货包数.
解答:解:(Ⅰ)由题意可知:一年总共需要进货
6000
x
(x∈N*且x≤6000)次,
y=3.4×6000-2.8×6000-
6000
x
•62.5-1.5x

整理得:y=3600-
375000
x
-
3x
2
(x∈N*且x≤6000).
(Ⅱ)y=3600-
375000
x
-
3x
2
=3600-(
375000
x
+
3x
2
)
(x∈N*且x≤6000),
375000
x
+
3x
2
2
375000
x
3x
2
=2
562500
=2×750=1500

(当且仅当
375000
x
=
3x
2
,即x=500时取等号)
∴当x=500时,ymax=3600-1500=2100(元),
答:当每次进货500包时,利润最大为2100元.
点评:本题考查的知识点是函数最值的应用,其中根据已知条件计算出利润y(元)元表示为每次进货量x(包)的函数表达式是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网