题目内容
【题目】已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log (a5+a7+a9)的值是( )
A.﹣
B.﹣5
C.5
D.
【答案】B
【解析】解:∵数列{an}满足log3an+1=log3an+1(n∈N*), ∴an+1=3an>0,
∴数列{an}是等比数列,公比q=3.
又a2+a4+a6=9,
∴ =a5+a7+a9=33×9=35 ,
则log (a5+a7+a9)= =﹣5.
故选;B.
数列{an}满足log3an+1=log3an+1(n∈N*),可得an+1=3an>0,数列{an}是等比数列,公比q=3.又a2+a4+a6=9,a5+a7+a9=33×9,再利用对数的运算性质即可得出.
练习册系列答案
相关题目
【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
时间(分钟) | |||||
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.
(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).