题目内容

【题目】如图,已知椭圆 的左、右焦点分别为,短轴的两端点分别为,线段的中点分别为,且四边形是面积为8的矩形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过作直线交椭圆于两点,若,求直线的方程.

【答案】(1); (2) .

【解析】

(I)通过矩形的面积和对角线长相等列方程组,结合,解得的值,从而求得椭圆方程.(II)当直线的斜率不存在时,直接得出直线的方程,代入椭圆方程求得两点的坐标,代入验证出不符合题意.当直线的斜率存在时,设出直线的方程,联立直线的方程和椭圆的方程,化简后写出韦达定理,将坐标代入,解方程求得直线的斜率,由此求得直线的方程.

(I)在矩形中,

所以四边形是正方形,所以

∴椭圆C的方程为

(II)由(I)可知

1)当直线l的斜率不存在时,l的方程为x=-2,

l:x=-2不满足题意.

2)当l的斜率为k时,设l的方程为

综上所述,直线l的方程为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网