题目内容

如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F

(1)求证:PA∥平面EDB;

(2)求证:PB⊥平面EFD;

(3)求二面角C-PB-D的大小。

 

【答案】

设AC、BD相交于点O,连接OE、BE、DF。

(1)明显可知,PA在平面EDB外,E是PC中点,O是正方形ABCD中点,所以OE是三角形APC中位线,所以有EO//PA。所以PA//平面EDB。

(2)由条件可知,BC垂直于CD,侧棱PD⊥底面ABCD,所以,PD⊥BC,PD/CD相交于点D,所以BC⊥平面PCD。因为PD=CD,E是PC中点,所以DE⊥PC,所以DE⊥平面PBC,所以DE⊥PB,又因为EF⊥PB,且DE和EF相交,所以PB⊥平面EFD

(2)以DA,DC,DP为x,y,z轴建立空间直角坐标系,设底面正方形的边长为1,易知为平面CBD的法向量,为平面PBD的法向量,,二面角C-PB-D的大小为

【解析】(1)设AC、BD相交于点O,连接OE,证明线线平行EO//PA,得到线面平行;(2)证明PB垂直平面内两条相交直线;(3向量法计算

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网