题目内容
求和:1+2x+3x2+…+nxn-1,x∈R.
分析:根据题意,分3种情况讨论:(1)x=1时,由等差数列前n项和公式可得Sn,(3)x≠1时,用错位相减法,可得答案.
解答:解,根据题意,分3种情况讨论:
(1)x=1时,由等差数列前n项和公式可得Sn=1+2+3+…+n=
,
(2)当x≠1时,
设Sn=1+2x+3x2+…+nxn-1,①
则xSn=x+2x2+3x3+…+nxn,②
①-②可得:(1-x)Sn=1+x+x2+…+xn-1-nxn=1-nxn+
则Sn=
.
故当x=0时,Sn=1;
当x=1时,Sn=
,
当x≠0且x≠1时,Sn=
.
(1)x=1时,由等差数列前n项和公式可得Sn=1+2+3+…+n=
n(n+1) |
2 |
(2)当x≠1时,
设Sn=1+2x+3x2+…+nxn-1,①
则xSn=x+2x2+3x3+…+nxn,②
①-②可得:(1-x)Sn=1+x+x2+…+xn-1-nxn=1-nxn+
x(1-xn-1) |
1-x |
则Sn=
1-(n+1)xn+nxn+1 |
(1-x)2 |
故当x=0时,Sn=1;
当x=1时,Sn=
n(n+1) |
2 |
当x≠0且x≠1时,Sn=
1-(n+1)xn+nxn+1 |
(1-x)2 |
点评:本题考查数列的求和,注意按x的值不同,分3种情况讨论,容易遗漏x=0的情况.
练习册系列答案
相关题目