ÌâÄ¿ÄÚÈÝ
£¨2013•»ÆÆÖÇø¶þÄ££©ÉèÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬¾¹ýµãFµÄ¶¯Ö±Ïßl½»Å×ÎïÏßCÓÚµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÇÒy1y2=-4£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©Èô
=2(
+
)£¨OΪ×ø±êԵ㣩£¬ÇÒµãEÔÚÅ×ÎïÏßCÉÏ£¬ÇóÖ±ÏßlÇãб½Ç£»
£¨3£©ÈôµãMÊÇÅ×ÎïÏßCµÄ×¼ÏßÉϵÄÒ»µã£¬Ö±ÏßMF£¬MA£¬MBµÄбÂÊ·Ö±ðΪk0£¬k1£¬k2£®ÇóÖ¤£ºµ±k0Ϊ¶¨ÖµÊ±£¬k1+k2ҲΪ¶¨Öµ£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©Èô
OE |
OA |
OB |
£¨3£©ÈôµãMÊÇÅ×ÎïÏßCµÄ×¼ÏßÉϵÄÒ»µã£¬Ö±ÏßMF£¬MA£¬MBµÄбÂÊ·Ö±ðΪk0£¬k1£¬k2£®ÇóÖ¤£ºµ±k0Ϊ¶¨ÖµÊ±£¬k1+k2ҲΪ¶¨Öµ£®
·ÖÎö£º£¨1£©Éè³öÖ±Ïߵķ½³ÌÓëÅ×ÎïÏߵķ½³ÌÁªÁ¢£¬ÏûÈ¥xµÃµ½¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøù¾Ý¸ùÓëϵÊýµÄ¹Øϵ¼´¿ÉµÃ³ö£»
£¨2£©¸ù¾ÝÏòÁ¿ºÍ£¨1£©µÄ½áÂÛ¿ÉÓÃk±íʾEµãµÄ×ø±ê´úÈëÅ×ÎïÏߵķ½³Ì¼´¿ÉµÃ³öÖ±ÏßlµÄбÂʺÍÇãб½Ç£»
£¨3£©ÀûÓÃÏòÁ¿¼ÆË㹫ʽºÍ£¨1£©ÖеĸùÓëϵÊýµÄ¹Øϵ¼´¿ÉµÃ³ö£®
£¨2£©¸ù¾ÝÏòÁ¿ºÍ£¨1£©µÄ½áÂÛ¿ÉÓÃk±íʾEµãµÄ×ø±ê´úÈëÅ×ÎïÏߵķ½³Ì¼´¿ÉµÃ³öÖ±ÏßlµÄбÂʺÍÇãб½Ç£»
£¨3£©ÀûÓÃÏòÁ¿¼ÆË㹫ʽºÍ£¨1£©ÖеĸùÓëϵÊýµÄ¹Øϵ¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÌâÒâ¿ÉÖª£ºF(
£¬0)£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+
£¬Ôò£º
ÁªÁ¢·½³Ì£º
£¬ÏûÈ¥x¿ÉµÃ£ºy2-2pky-p2=0£¨*£©£¬
¸ù¾ÝΤ´ï¶¨Àí¿ÉµÃ£ºy1y2=-p2=-4£¬¡àp=2£¬
¡àÅ×ÎïÏßCµÄ·½³Ì£ºy2=4x£®
£¨2£©ÉèE£¨x0£¬y0£©£¬Ôò£º
£¬ÓÉ£¨*£©Ê½¿ÉµÃ£ºy1+y2=2pk=4k
¡ày0=8k£¬
ÓÖ
£¬¡àx1+x2=k(y1+y2)+p=2pk2+p=4k2+2
¡àx0=8k2+4
¡ß
=4x0£¬¡à64k2=4£¨8k2+4£©£¬¡à2k2=1£¬¡àk=¡À
¡àÖ±ÏßlµÄбÂÊkl=
=tan¦Á=¡À
£¬
¡àÇãб½ÇΪarctan
»ò¦Ð-arctan
£¨3£©¿ÉÒÔÑéÖ¤¸Ã¶¨ÖµÎª2k0£¬Ö¤Ã÷ÈçÏ£º
ÉèM£¨-1£¬yM£©£¬Ôò£ºk0=
£¬k1=
£¬k2=
¡ß
£¬¡à
¡àk1+k2=
+
=
+
=
=
=
=-yM
¡àk1+k2=2k0Ϊ¶¨Öµ£®
p |
2 |
p |
2 |
ÁªÁ¢·½³Ì£º
|
¸ù¾ÝΤ´ï¶¨Àí¿ÉµÃ£ºy1y2=-p2=-4£¬¡àp=2£¬
¡àÅ×ÎïÏßCµÄ·½³Ì£ºy2=4x£®
£¨2£©ÉèE£¨x0£¬y0£©£¬Ôò£º
|
¡ày0=8k£¬
ÓÖ
|
¡àx0=8k2+4
¡ß
y | 2 0 |
| ||
2 |
¡àÖ±ÏßlµÄбÂÊkl=
1 |
k |
2 |
¡àÇãб½ÇΪarctan
2 |
2 |
£¨3£©¿ÉÒÔÑéÖ¤¸Ã¶¨ÖµÎª2k0£¬Ö¤Ã÷ÈçÏ£º
ÉèM£¨-1£¬yM£©£¬Ôò£ºk0=
-yM |
2 |
y1-yM |
x1+1 |
y2-yM |
x2+1 |
¡ß
|
|
¡àk1+k2=
y1-yM |
x1+1 |
y2-yM |
x2+1 |
y1-yM |
ky1+2 |
y2-yM |
ky2+2 |
=
(y1-yM)(ky2+2)+(y2-yM)(ky1+2) |
(ky1+2)(ky2+2) |
=
2ky1y2+2(y1+y2)-yM(k(y1+y2)+4) |
k2y1y2+2k(y1+y2)+4 |
=
-8k+8k-yM(4k2+4) |
-4k2+8k2+4 |
¡àk1+k2=2k0Ϊ¶¨Öµ£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÖ±ÏßÓëÅ×ÎïÏßÏཻÎÊÌâת»¯ÎªÖ±Ïß·½³ÌÓëÅ×ÎïÏߵķ½³ÌÁªÁ¢µÃµ½Ò»Ôª¶þ´Î·½³Ì¡¢¸ù¾Ý¸ùÓëϵÊýµÄ¹Øϵ¡¢Ð±ÂʵļÆË㹫ʽÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿