题目内容
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一点,PE=2EC.
(1)证明:PC⊥平面BED;
(2)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.
【答案】
(1)
证明:以A为坐标原点,建立如图空间直角坐标系A﹣xyz,
设D( ,b,0),则C(2 ,0,0),P(0,0,2),E( ,0, ),B( ,﹣b,0)
∴ =(2 ,0,﹣2), =( ,b, ), =( ,﹣b, )
∴ = ﹣ =0, =0
∴PC⊥BE,PC⊥DE,BE∩DE=E
∴PC⊥平面BED
(2)
解: =(0,0,2), =( ,﹣b,0)
设平面PAB的法向量为 =(x,y,z),则
取 =(b, ,)
设平面PBC的法向量为 =(p,q,r),则
取 =(1,﹣ , )
∵平面PAB⊥平面PBC,∴ =b﹣ =0.故b=
∴ =(1,﹣1, ), =(﹣ ,﹣ ,2)
∴cos< , >= =
设PD与平面PBC所成角为θ,θ∈[0, ],则sinθ=
∴θ=30°
∴PD与平面PBC所成角的大小为30°
【解析】(1)先由已知建立空间直角坐标系,设D( ,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(2)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角
【考点精析】利用直线与平面垂直的判定和向量语言表述线面的垂直、平行关系对题目进行判断即可得到答案,需要熟知一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可;设直线的方向向量是,平面内的两个相交向量分别为,若.