题目内容

【题目】设集合M={x|x2+3x+2<0},集合 ,则M∪N=(
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}

【答案】A
【解析】解答:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1}, 集合 ={x|2x≤22}={x|﹣x≤2}={x|x≥﹣2},
∴M∪N={x|x≥﹣2},
故选A.
分析:根据题意先求出集合M和集合N,再求M∪N.
【考点精析】关于本题考查的解一元二次不等式,需要了解求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网