题目内容
【题目】已知函数.
(1)若曲线在点处的切线方程为,求的值;
(2)若的导函数存在两个不相等的零点,求实数的取值范围;
(3)当时,是否存在整数,使得关于的不等式恒成立?若存在,求出的最大值;若不存在,说明理由.
【答案】(1);(2);(3)存在,最大值为.
【解析】
(1)求出函数的导数,由题意得出从而可求出实数的值;
(2)令,可得知函数在上有两个零点,分和两种情况讨论,利用导数分析函数在区间上的单调性和极值,由题意转化为函数极值相关的不等式,解出即可得出实数的取值范围;
(3)将代入函数的解析式得出,对该函数求导得出,构造函数,利用单调性结合零点存在定理找出函数的极小值点,并满足,结合此关系式计算得出,从而可得出整数的最大值.
(1),
因为曲线在点处的切线方程为,
所以,得;
(2)因为存在两个不相等的零点.
所以存在两个不相等的零点,则.
①当时,,所以单调递增,至多有一个零点
②当时,因为当时,,单调递增,
当时,,单调递减,
所以时,.
因为存在两个零点,所以,解得.
因为,所以.
因为,所以在上存在一个零点.
因为,所以.
因为,设,则,
因为,所以单调递减,
所以,所以,
所以在上存在一个零点.
综上可知,实数的取值范围为;
(3)当时,,,
设,则.所以单调递增,
且,,所以存在使得,
因为当时,,即,所以单调递减;
当时,,即,所以单调递增,
所以时,取得极小值,也是最小值,
此时,
因为,所以,
因为,且为整数,所以,即的最大值为.
练习册系列答案
相关题目