题目内容

【题目】(2015·陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,c的极坐标方程为=2sin
(1)写出c的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

【答案】
(1)

x2+(y)2=3


(2)

(3,0)


【解析】(1)由 ρ =2 sin θ , 得 ρ2 =2 ρ sin θ,
从而有. x2+y2=2 y, 所以x2+(y-)2=3
(2)设P(3+ t, t), 又C(0, ),则|PC|= =
故当t=0时,|PC|取最小值,此时P点的直角坐标为(3,0).
【考点精析】解答此题的关键在于理解极坐标系的相关知识,掌握平面内取一个定点O,叫做极点;自极点O引一条射线OX叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系,以及对直线的参数方程的理解,了解经过点,倾斜角为的直线的参数方程可表示为为参数).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网