题目内容
【题目】若5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,求:
(1)甲中奖的概率;
(2)甲乙都中奖的概率;
(3)只有乙中奖的概率.
【答案】(1);(2);(3)
【解析】
(1)记甲中奖为事件A,5张奖券中有2张是中奖的,由等可能事件的概率公式计算可得答案;
(2)记甲、乙都中奖为事件B,由(1)可得,首先由甲抽一张,中奖的概率,分析此条件下乙中奖的概率,由相互独立事件的概率的乘法公式计算可得答案;
(3)记只有乙中奖为事件C,首先计算由对立事件的概率性质计算甲没有中奖的概率,进而分析此条件下乙中奖的概率,由相互独立事件的概率的乘法公式计算可得答案.
(1)根据题意,甲中奖为事件A,
5张奖券中有2张是中奖的,则甲从中随机抽取1张,则其中奖的概率为.
(2)记甲、乙都中奖为事件B,
由(1)可得,首先由甲抽一张,中奖的概率为,
若甲中奖,此时还有4张奖券,其中1张有奖,则乙中奖的概率为,
则甲、乙都中奖的概率.
(3)记只有乙中奖为事件C,
首先甲没有中奖,其概率为,
此时还有4张奖券,其中2张有奖,则乙中奖的概率为,
则只有乙中奖的概率为.
练习册系列答案
相关题目