题目内容
先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
(1);(2)
解析试题分析:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.
∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是即:a2+b2=25,……2分
由于a,b∈{1,2,3,4,5,6}
∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况. ……4分
∴直线ax+by+c=0与圆x2+y2=1相切的概率是 ……6分
(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.
∵三角形的一边长为5 ∴当a=1时,b=5,(1,5,5) 1种
当a=2时,b=5,(2,5,5) 1种
当a=3时,b=3,5,(3,3,5),(3,5,5) 2种
当a=4时,b=4,5,(4,4,5),(4,5,5) 2种
当a=5时,b=1,2,3,4,5,6, (5,1,5),(5,2,5),(5,3,5),
(5,4,5),(5,5,5),(5,6,5) 6种
当a=6时,b=5,6,(6,5,5),(6,6,5) 2种
故满足条件的不同情况共有14种 ……12分
答:三条线段能围成不同的等腰三角形的概率为. ……14分
考点:本题考查了古典概型的应用,考查了学生分析问题解决问题的能力。
点评:对于古典概型的概率的计算,首先要分清基本事件总数及事件包含的基本事件数,分清的方法常用列表法、画图法、列举法、列式计算等方法。
(本小题满分12分)为了参加年贵州省高中篮球比赛,某中学决定从四个篮球较强的班级中选出人组成男子篮球队代表所在地区参赛,队员来源人数如下表:
班级 | 高三()班 | 高三()班 | 高二()班 | 高二()班 |
人数 |