题目内容

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0, ]
(1)求C的参数方程;
(2)设点D在半圆C上,半圆C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.

【答案】
(1)解:由半圆C的极坐标方程为ρ=2cosθ,θ∈[0, ],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).

可得C的参数方程为 (t为参数,0≤t≤π).


(2)解:设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,

∵直线CD的斜率与直线l的斜率相等,∴tant= ,t=

故D的直角坐标为 ,即(


【解析】(1)利用 即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y= x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网