ÌâÄ¿ÄÚÈÝ

ÒÑÖªµã£¨1£¬
1
3
£©ÊǺ¯Êýf£¨x£©=ax£¨a£¾0ÇÒa¡Ù1£©Í¼ÏóÉϵÄÒ»µã£¬µÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪf£¨n£©-c£¬ÊýÁÐ{bn}£¨bn£¾0£©µÄÊ×ÏîΪc£¬ÇÒÇ°nÏîºÍSnÂú×ãSn-Sn-1=
Sn
+
Sn-1
£¨n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{
1
bnbn+1
}µÄÇ°nÏîºÍΪTn£¬ÎÊʹTn£¾
1000
2011
µÄ×îСÕýÕûÊýnÊǶàÉÙ£¿
£¨3£©Èôcn=-
1
2
an•bn£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍ£®
·ÖÎö£º£¨1£©ÓÉf£¨1£©=
1
3
¿ÉÇóµÃa£¬´Ó¶øµÃf£¨x£©£¬Çó³öa1£¬a2£¬a3£¬¸ù¾ÝµÈ±ÈÖÐÏʽ¿ÉÇóµÃcÖµ£¬½ø¶ø¿ÉµÃ¹«±È£¬ÇóµÃan£»ÓÉSn-Sn-1=
Sn
+
Sn-1
£¬¿ÉµÃ
Sn
-
Sn-1
=1£¬ÓɵȲîÊýÁеĶ¨Òå¿ÉÅжÏ{
Sn
}}¹¹³ÉµÈ²îÊýÁУ¬Çó³öSn£¬ÓÉSnÓëbnµÄ¹Øϵ¿ÉÇóµÃbn£»
£¨2£©ÀûÓÃÁÑÏîÏàÏû·¨¿ÉÇóµÃTn£¬½ø¶ø¿É½âTn£¾
1000
2011
£¬µÃµ½½á¹û£»
£¨3£©Ïȱíʾ³öcn£¬È»ºóÀûÓôíλÏà¼õ·¨¿ÉÇóµÃÊýÁÐ{cn}µÄÇ°nÏîºÍ£®
½â´ð£º½â£º£¨1£©¡ßf£¨x£©=ax£¬ÇÒf£¨1£©=
1
3
£¬¡àa=
1
3
£¬
¡àf£¨x£©=(
1
3
)x
£®
¡àa1=f£¨1£©-c=
1
3
-
c£¬a2=[f£¨2£©-c]-[f£¨1£©-c]=-
2
9
£¬a3=[f£¨3£©-c]-[f£¨2£©-c]=-
2
27
£®
ÓÖÊýÁÐ{an}³ÉµÈ±ÈÊýÁУ¬
¡à(-
2
9
)2=(
1
3
-c)(-
2
27
)
£¬½âµÃc=1£¬
ÓÖ¹«±Èq=
a2
a1
=
1
3
£¬¡àan=-
2
3
•(
1
3
)n-1
=-
2
3n
£¬
ÓÉSn-Sn-1=
Sn
+
Sn-1
£¬µÃ£¨
Sn
+
Sn-1
£©£¨
Sn
-
Sn-1
£©=
Sn
+
Sn-1
£¨n¡Ý2£©£¬
ÓÖbn£¾0£¬¡à
Sn
-
Sn-1
=1£¬
¡àÊýÁÐ{
Sn
}}¹¹³ÉÒ»¸öÊ×ÏîΪ1¹«²îΪ1µÄµÈ²îÊýÁУ¬
Ôò
Sn
=n£¬¡àSn=n2£¬
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=n2-£¨n-1£©2=2n-1£¬ÓÖ¸ÃʽÂú×ãb1=c=1£¬
¡àbn=2n-1£»  
£¨2£©Tn=
1
b1b2
+
1
b2b3
+¡­+
1
bnbn+1

=
1
1¡Á3
+
1
3¡Á5
+¡­+
1
(2n-1)(2n+1)
     
=
1
2
(1-
1
3
+
1
3
-
1
5
+¡­+
1
2n-1
-
1
2n+1
)

=
1
2
£¨1-
1
2n+1
£©=
n
2n+1
£¬
ÓÉTn£¾
1000
2011
£¬µÃ
n
2n+1
£¾
1000
2011
£¬½âµÃn£¾
1000
11
£¬
¡àʹTn£¾
1000
2011
µÄ×îСÕýÕûÊýnÊÇ91£®
£¨3£©cn=-
1
2
anbn
=-
1
2
•£¨-
2
3n
£©•£¨2n-1£©=
2n-1
3n
£¬
Éè{cn}µÄÇ°nÏîºÍΪRn£¬ÔòRn=
1
3
+
3
32
+
5
33
+¡­+
2n-1
3n
¢Ù£¬
1
3
Rn=
1
32
+
3
33
+
5
34
+¡­+
2n-1
3n+1
¢Ú£¬
¢Ù-¢ÚµÃ£¬
2
3
Rn
=
1
3
+
2
32
+
2
33
+¡­+
2
3n
-
2n-1
3n+1
=
1
3
+2¡Á
1
9
(1-
1
3n-1
)
1-
1
3
=
2
3
-
2n+2
3n+1
£¬
¡àRn=1-
n+1
3n
£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬¿¼²éÁËÊýÁÐÇóºÍµÄ´íλÏà¼õ·¨ºÍÁÐÏîÏàÏû·¨£¬ÊǸ߿¼ÊýÁв¿·ÖµÄ³£¼ûÌâÐÍ£¬ÊôÖеÈÒÔÉÏÄѶÈÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø