题目内容

已知点(1,
1
3
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{
1
bnbn+1
前n项和为Tn,问:Tn
1000
2013
的最小正整数n是多少?
分析:(1)由条件先求出f(x),再求出数列的前三项,由前三项成等比数列求出c的值,则通项{an}可求;判断数列{
Sn
}构成一个首项为1,公差为1的等差数列,求出其通项后则可求数列{bn}的通项公式;
(2)利用裂项法求出数列的和,代入不等式可求最小正整数n.
解答:解:(1)因为f(x)=ax,且f(1)=
1
3
,所以a=
1
3
,所以f(x)=(
1
3
x
所以a1=f(1)-c=
1
3
-c,a2=[f(2)-c]-[f(1)-c]=-
2
9
,a3=[f(3)-c]-[f(2)-c]=-
2
27

又数列{an}成等比数列,所以a1=
a22
a3
=
4
81
-
2
27
=-
2
3
=
1
3
-c,所以c=1,
又公比q=
a2
a1
=
1
3
,所以an=-
2
3
1
3
n-1=-2•(
1
3
n(n∈N* ),
所以Sn-Sn-1=(
Sn
+
Sn-1
)(
Sn
-
Sn-1
)=
Sn
+
Sn-1
(n≥2).
又bn>0,
Sn
>0,所以
Sn
-
Sn-1
)=1,
∴数列{
Sn
}构成一个首项为1,公差为1的等差数列,
Sn
=1+(n-1)×1=n,∴Sn=n2
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1,又其满足b1=c=1,
所以bn=2n-1;   
(2)
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)
=
n
2n+1

∵Tn
1000
2013
,∴
n
2n+1
1000
2013

n>
1000
13

∴满足Tn
1000
2013
的最小正整数n是77.
点评:本题考查了数列与不等式的综合,考查数列的通项与求和,考查裂项相消法,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网