题目内容

【题目】如图,在四棱锥中,,底面四边形为直角梯形,为线段上一点.

(1)若,则在线段上是否存在点,使得平面?若存在,请确定点的位置;若不存在,请说明理由

(2)己知,若异面直线角,二而角的余弦值为,求的长.

【答案】(1)存在,点是线段上靠近点的一个三等分点(2)2.

【解析】

(1) 延长交于点,连接。通过证明可得MPB上的一个三等分点,且靠近点P

(2)建立空间直角坐标系,写出各个点的坐标,分别求得平面和平面的法向量,再根据二面角夹角的余弦值即可得参数t的值,进而求得CD的长。

解:(1)延长交于点,连接,则平面.

平面,由平面平面平面,则.

,则

故点是线段上靠近点的一个三等分点.

2)∵平面平面

平面

以点为坐标原点,以所在的直线分别为轴、轴,过点与平面垂直的直线为轴,建立如图所示的直角坐标系,

,则

设平面和平面的法向量分别为.

,则,故.

同理可求得.

于是,则,解之得(负值舍去),故.

.

练习册系列答案
相关题目

【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

个人所得税税率表(调整前)

个人所得税税率表(调整后)

免征额3500元

免征额5000元

级数

全月应纳税所得额

税率(%)

级数

全月应纳税所得额

税率(%)

1

不超过1500元部分

3

1

不超过3000元部分

3

2

超过1500元至4500元的部分

10

2

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

3

超过12000元至25000元的部分

20

...

...

...

...

...

...

(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;

(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表

收入(元)

人数

30

40

10

8

7

5

先从收入在的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,随机变量,求的分布列与数学期望

小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网