题目内容
【题目】设集合A={(x1 , x2 , x3 , x4 , x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )
A.60
B.90
C.120
D.130
【答案】D
【解析】解:由于|xi|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:
①xi中有2个取值为0,另外3个从﹣1,1中取,共有方法数: ;
②xi中有3个取值为0,另外2个从﹣1,1中取,共有方法数: ;
③xi中有4个取值为0,另外1个从﹣1,1中取,共有方法数: .
∴总共方法数是 + + =130.
即元素个数为130.
故选:D.
【题目】随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:
分组 | 频数 | 频率 |
[25,30] | 3 | 0.12 |
(30,35] | 5 | 0.20 |
(35,40] | 8 | 0.32 |
(40,45] | n1 | f1 |
(45,50] | n2 | f2 |
(1)确定样本频率分布表中n1 , n2 , f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.
【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参照附表,得到的正确的结论是( )
A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”
B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”