题目内容
如图,已知抛物线
的焦点为
,过焦点
且不平行于
轴的动直线
交抛物线于
,
两点,抛物线在
、
两点处的切线交于点
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122021623678.jpg)
(Ⅰ)求证:
,
,
三点的横坐标成等差数列;
(Ⅱ)设直线
交该抛物线于
,
两点,求四边形
面积的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202037520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202053302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202053302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202068266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202084280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202100300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202115309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202100300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202115309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202162399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122021623678.jpg)
(Ⅰ)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202100300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202162399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202115309.png)
(Ⅱ)设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202224472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202240313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202256315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202271533.png)
(Ⅰ)可设直线
的方程
(
),
,
,由
消去
,得
,
.
,
,由
,得
,所以
,直线
的斜率为
直线
的方程为
同理,直线
的方程为
M的横坐标
即
,
,
三点的横坐标成等差数列(Ⅱ)32
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202287396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202302528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202318418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202334616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202349644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202365892.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202412310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202427623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202443738.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202458596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202474496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202037520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202490582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202521551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202536475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202552690.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202536475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202583686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202599474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202614714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202630591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202100300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202162399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202115309.png)
试题分析:(Ⅰ)由已知,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202677503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202287396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202287396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202302528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202318418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202334616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202349644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122027865005.jpg)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202365892.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202412310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202427623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202443738.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202458596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202474496.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202037520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202490582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202521551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202536475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202552690.png)
所以,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202536475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203004815.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203020553.png)
所以,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202536475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202583686.png)
同理,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202599474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202614714.png)
②-①并据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203114439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202630591.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202100300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202162399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202115309.png)
(Ⅱ)由①②易得y=-1,所以点M的坐标为(2k,-1)(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202318418.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203238795.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203254617.png)
设C(x3,y3),D(x4,y4), 由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122032701014.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202412310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203301709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203316791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203348646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203348490.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122033631707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122033941270.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122035191957.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122035191504.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203566651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203566563.png)
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122035972383.png)
当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203613381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012202271533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203644362.png)
点评:当直线与圆锥曲线相交时,常联立方程组转化为关于x的二次方程,进而利用方程的根与系数的关系设而不求的方法化简,在求解时弦长公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012203660889.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目