题目内容
平面直角坐标系中,点集M=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231818491241366.png)
,则点集M所覆盖的平面图形的面积为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231818491241366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181849139744.png)
A.![]() | B.![]() | C.![]() | D.与![]() |
A
分析:欲求点集M所覆盖的平面图形的面积,先看点M的轨迹是什么图形才行,将x,y的式子平方相加后即可得出x2+y2=2+2sin(α-β).再结合三角函数的有界性即可解决问题.
解:∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231818491241366.png)
两式平方相加得:
x2+y2=1+1+2sinαcosβ-2cosαsinβ
即:x2+y2=2+2sin(α-β).
由于-1≤sin(α-β)≤1,
∴0≤2+2sin(α-β)≤4,
∴随着α-β 的变化,方程x2+y2=2+2sin(α-β)圆心在(0,0),半径最大为2的圆,
点集M所覆盖的平面图形的面积为:2×2×π=4π.
故选A.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目