题目内容

平面直角坐标系中,点集M=,则点集M所覆盖的平面图形的面积为
A.B.C.D.与有关
A

分析:欲求点集M所覆盖的平面图形的面积,先看点M的轨迹是什么图形才行,将x,y的式子平方相加后即可得出x2+y2=2+2sin(α-β).再结合三角函数的有界性即可解决问题.
解:∵
两式平方相加得:
x2+y2=1+1+2sinαcosβ-2cosαsinβ
即:x2+y2=2+2sin(α-β).
由于-1≤sin(α-β)≤1,
∴0≤2+2sin(α-β)≤4,
∴随着α-β 的变化,方程x2+y2=2+2sin(α-β)圆心在(0,0),半径最大为2的圆,
点集M所覆盖的平面图形的面积为:2×2×π=4π.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网