ÌâÄ¿ÄÚÈÝ

ÏÂÁÐÃüÌ⣺
£¨1£©Èôº¯Êýf£¨x£©=lg£¨x+
x2+a
£©£¬ÎªÆ溯Êý£¬Ôòa=1£»
£¨2£©º¯Êýf£¨x£©=|sinx|µÄÖÜÆÚT=¦Ð£»
£¨3£©ÒÑÖª
a
=(sin¦È£¬
1+cos¦È
)£¬
b
=(1£¬
1-cos¦È
)
£¬ÆäÖЦȡʣ¨¦Ð£¬
3¦Ð
2
£©£¬Ôò
a
¡Í
b

£¨4£©ÔÚ¡÷ABCÖУ¬
BA
=a£¬
AC
=b£¬Èôa•b£¼0£¬Ôò¡÷ABCÊǶ۽ÇÈý½ÇÐÎ
£¨ 5£©OÊÇ¡÷ABCËùÔÚƽÃæÉÏÒ»¶¨µã£¬¶¯µãPÂú×㣺
OP
=
OA
+¦Ë(
AB
sinC
+
AC
sinB
)
£¬¦Ë¡Ê£¨0£¬+¡Þ£©£¬ÔòÖ±ÏßAPÒ»¶¨Í¨¹ý¡÷ABCµÄÄÚÐÄ£®
ÒÔÉÏÃüÌâΪÕæÃüÌâµÄÊÇ
£¨1£©£¨2£©£¨3£©£¨5£©
£¨1£©£¨2£©£¨3£©£¨5£©
£®
·ÖÎö£º£¨1£©Èôº¯Êýf£¨x£©=lg£¨x+
x2+a
£©ÎªÆ溯Êý£¬Ôòf£¨0£©=0£¬Ôò´ËÄÜÇó³öaµÄÖµ£»
£¨2£©ÓÉÕýÏÒº¯ÊýµÄͼÏóÖªº¯ÊýÄÜÇó³öf£¨x£©µÄÖÜÆÚ£»
£¨3£©Ð´³öÁ½¸öÏòÁ¿µÄÊýÁ¿»ý£¬ÔËÓÃͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØϵʽÕûÀí¼´¿ÉµÃµ½½áÂÛ£»
£¨4£©ÔÚ¡÷ABCÖУ¬
BA
=
a
£¬
AC
=
b
£¬
a
b
£¼0£¬Ôò¡ÏBACÊÇÈñ½Ç£¬ÓÉ´ËÎÞ·¨Åжϡ÷ABCÒ»¶¨ÊǶ۽ÇÈý½ÇÐΣ»
£¨5£©°Ñ¸ø³öµÈʽÖеĽǵÄÕýÏÒÖµÓöÔÓ¦±ß³¤ºÍÍâ½ÓÔ²°ë¾¶±íʾ£¬ÒÆÏòÕûÀíºóµÃ
AP
=2R¦Ë£¨
AB
|
AB
|
+
AC
|
AC
|
£©£¬ÓÉ´Ëʽ¿ÉÖªÖ±ÏßAPÒ»¶¨Í¨¹ý¡÷ABCµÄÄÚÐÄ£®
½â´ð£º½â£ºÈôº¯Êýf£¨x£©=lg£¨x+
x2+a
£©ÎªÆ溯Êý£¬
Ôòf£¨0£©=lg£¨0+
0+a
£©=lg
a
=0£¬½âµÃa=1£¬¹Ê£¨1£©³ÉÁ¢£»
ÓÉÕýÏÒº¯ÊýµÄͼÏóÖªº¯Êýf£¨x£©=|sinx|µÄÖÜÆÚT=¦Ð£¬¹Ê£¨2£©³ÉÁ¢£»
¡ß
a
=(sin¦È£¬
1+cos¦È
)£¬
b
=(1£¬
1-cos¦È
)
£¬ÆäÖЦȡʣ¨¦Ð£¬
3¦Ð
2
£©£¬
¡à
a
b
=sin¦È+
1-cos2¦È
=sin¦È-sin¦È=0£¬
¡à
a
¡Í
b
£¬¹Ê£¨3£©³ÉÁ¢£»
ÔÚ¡÷ABCÖУ¬
BA
=
a
£¬
AC
=
b
£¬
a
b
£¼0£¬
Ôò¡ÏBACÊÇÈñ½Ç£¬¡÷ABC²»Ò»¶¨ÊǶ۽ÇÈý½ÇÐΣ¬¹Ê£¨4£©²»³ÉÁ¢£»
Èçͼ£¬

ÔÚ¡÷ABCÖУ¬ÓÉ
|
AB
|
sinC
=
|
AC
|
sinB
=2R£¨RΪÈý½ÇÐÎABCÍâ½ÓÔ²°ë¾¶£©£¬
ËùÒÔsinC=
|
AB
|
2R
£¬sinB=
|
AC
|
2R
£¬
ËùÒÔ
OP
=
OA
+¦Ë£¨
AB
sinC
+
AC
sinB
£©=
OA
+¦Ë£¨
2R
AB
|
AB
|
+
2R
AC
|
AC
|
£©=
OA
+2R¦Ë£¨
AB
|
AB
|
+
AC
|
AC
|
£©£¬
¼´
AP
=2R¦Ë£¨
AB
|
AB
|
+
AC
|
AC
|
£©£¬
ËùÒÔÖ±ÏßAPÒ»¶¨Í¨¹ý¡÷ABCµÄÄÚÐÄ£®¹Ê£¨5£©ÕýÈ·£®
¹Ê´ð°¸Îª£º£¨1£©£¨2£©£¨3£©£¨5£©£®
µãÆÀ£º±¾Ì⿼²éÁËÃüÌâµÄÕæ¼ÙµÄÅжÏÓëÔËÓã¬ÊÇÖеµÌ⣮½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÆ溯Êý¡¢ÏòÁ¿µÄÊýÁ¿»ý¡¢Èý½Çº¯Êý¡¢ÕýÏÒ¶¨ÀíµÈ֪ʶµãµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø