题目内容
7.已知an=$\frac{4{n}^{2}+k}{2n+1}$,{an}为等差数列.(1)求k的值及{2an}的前n项和Sn;
(2)记bn=$\frac{n{a}_{n}{a}_{n+1}+2}{{a}_{n}{a}_{n+1}}$,求{bn}的前n项和Tn.
分析 (1)通过化简可知an=2n-1+$\frac{k+1}{2n+1}$,进而可知k=-1,通过$\frac{{2}^{{a}_{n+1}}}{{2}^{{a}_{n}}}$可知数列{${2}^{{a}_{n}}$}是公比为4的等比数列,进而计算可得结论;
(2)通过化简、裂项可知bn=n+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并项相加即得结论.
解答 解:(1)an=$\frac{4{n}^{2}+k}{2n+1}$=$\frac{4{n}^{2}-1+k+1}{2n+1}$=2n-1+$\frac{k+1}{2n+1}$,
∵{an}为等差数列,
∴k+1=0,即k=-1,
∴an=$\frac{4{n}^{2}-1}{2n+1}$=2n-1,
∵${2}^{{a}_{n}}$=22n-1,
∴$\frac{{2}^{{a}_{n+1}}}{{2}^{{a}_{n}}}$=$\frac{{2}^{2n+1}}{{2}^{2n-1}}$=4,
即数列{${2}^{{a}_{n}}$}是公比为4的等比数列,且${2}^{{a}_{1}}$=2,
∴Sn=$\frac{2(1-{4}^{n})}{1-4}$=$\frac{2}{3}$•4n-$\frac{2}{3}$;
(2)∵an=2n-1,
∴bn=$\frac{n{a}_{n}{a}_{n+1}+2}{{a}_{n}{a}_{n+1}}$=n+$\frac{2}{{a}_{n}{a}_{n+1}}$
=n+$\frac{2}{(2n-1)(2n+1)}$
=n+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=[1+(1-$\frac{1}{3}$)]+[2+($\frac{1}{3}$-$\frac{1}{5}$)]+…+[n+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)]
=(1+2+…+n)+[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)]
=$\frac{n(n+1)}{2}$+1-$\frac{1}{2n+1}$.
点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于中档题.
A. | n(n+1) | B. | $\frac{n(n+1)}{2}$ | C. | $\frac{n(n+5)}{2}$ | D. | $\frac{n(n+7)}{2}$ |
A. | (0,1) | B. | (1,2) | C. | (2,4) | D. | (4,+∞) |
A. | $\frac{π}{2}$ | B. | -$\frac{π}{2}$ | C. | $\frac{2}{π}$ | D. | -$\frac{2}{π}$ |
A. | |b|≤|ac| | B. | |b|≥$\sqrt{\frac{|a|+|c|}{2}}$ | C. | |b|≥$\sqrt{\frac{{{{|a|}^2}+{{|c|}^2}}}{2}}$ | D. | |b|≤$\frac{|a|+|c|}{2}$ |