题目内容

【题目】如图,边长为2的正方形ABCD所在平面与三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求点A到平面BDE的距离.

【答案】
(1)证明:∵正方形ABCD中,AB∥CD,

AB平面CDE,CD平面CDE,

∴AB∥平面CDE


(2)证明:∵AE⊥平面CDE,CD平面CDE,DE平面CDE,

∴AE⊥CD,DE⊥AE,

在正方形ABCD中,CD⊥AD,

∵AD∩AE=A,∴CD⊥平面ADE.

∵DE平面ADE,∴CD⊥DE,

∵AB∥CD,∴DE⊥AB,

∵AB∩AE=E,∴DE⊥平面ABE


(3)解:∵AB⊥AD,AB⊥DE,AD∩DE=D,

∴AB⊥平面ADE,

∴三棱锥B﹣ADE的体积VBADE= = =

= =

设点A到平面BDE的距离为d,

∵VABDE=VBADE,∴ = ,解得d=

∴点A到平面BDE的距离为


【解析】(1)推导出AB∥CD,由此能证明AB∥平面CDE.(2)推导出AE⊥CD,DE⊥AE,从而CD⊥DE,再由DE⊥AB,能证明DE⊥平面ABE.(3)由AB⊥平面ADE,能求出三棱锥B﹣ADE的体积.再由VABDE=VBADE,能求出点A到平面BDE的距离.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对直线与平面垂直的判定的理解,了解一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网