题目内容

【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn

【答案】
(1)证明:∵a1+a2+…+an+2n= (an+1+1),

∴当n≥2时,a1+a2+…+an1+2n1= (an+1),

∴an+2n1=

化为an+1=3an+2n

变形为:an+1+2n+1=3

∴数列{an+2n}是等比数列,首项为3,公比为3


(2)解:由(1)可得:an+2n=3n

∴an=3n﹣2n

∴数列{an}的前n项和Sn= = ﹣2n+1+


【解析】(1)利用递推关系、等比数列的通项公式即可得出;(2)利用等比数列的前n项和公式即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网