题目内容
【题目】
在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||.
【答案】(Ⅰ),(Ⅱ)略.
【解析】
(I)根据椭圆定义可知a=2,,所以b=1,再注意焦点在y轴上,曲线C的方程为.
(II) 直线与椭圆方程联立,消y得关于x的一元二次方程,再根据坐标化为,借助直线方程和韦达定理建立关于k的方程,求出k值.
(III)要证:||>||,,再根据A在第一象限,故,,从而证出结论.
解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,
故曲线C的方程为. 3分
(Ⅱ)设,其坐标满足
消去y并整理得,
故. 5分
若,即.而,
于是,
化简得,所以. 8分
(Ⅲ)
.
因为A在第一象限,故.由知,从而.又,
故,
即在题设条件下,恒有. 12分
练习册系列答案
相关题目
【题目】(1)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:
排队人数 | 0 | 1 | 2 | 3 | 4 | 5人及5人以上 |
概率 |
求至少3人排队等候的概率是多少?
(2)在区间上随机取两个数m,n,求关于x的一元二次方程有实根的概率.
【题目】有编号为的10个零件,测量其直径(单位:cm),得到下面数据:
编号 | ||||||||||
直径 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
其中直径在区间内的零件为一等品.
(1)上述10个零件中,随机抽取1个,求这个零件为一等品的概率.
(2)从一等品零件中,随机抽取2个;
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率.