题目内容
已知
,
设
.
(Ⅰ)求
的表达式;
(Ⅱ)若函数
和函数
的图象关于原点对称,
(ⅰ)求函数
的解析式;
(ⅱ)若函数
在区间
上是增函数,求实数l的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240100026961472.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240100027121108.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002743589.png)
(Ⅱ)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002743457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002759464.png)
(ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002743457.png)
(ⅱ)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002805884.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002821494.png)
Ⅰ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002837481.png)
;(Ⅱ)函数
的解析式为
= -sin2x+2sinx ;
(Ⅲ)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002837481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002852632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002743457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002743457.png)
(Ⅲ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002899523.png)
试题分析:(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240100029151377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240100029461146.png)
(Ⅱ)设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002961572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002961746.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002993622.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003008584.png)
∵点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003024407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002961572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003055710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003071761.png)
∴函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002743457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002743457.png)
(Ⅲ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240100031171057.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003133772.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240100031491391.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003164390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003195332.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003195430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003211518.png)
ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003227404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003242585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003227404.png)
ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003273417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003289561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003305487.png)
综上:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003320416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010003336202.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010002899523.png)
点评:典型题,为研究三角函数的图象和性质,往往需要将函数“化一”,这是常考题型。首先运用“三角公式”进行化简,为进一步解题奠定了基础。(3)小题利用“换元思想”,转化成二次函数在闭区间的单调性研究问题,根据图象对称轴受到的限制,求得实数l的取值范围。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目