题目内容

已知空间向量
a
=(1,n,2),
b
=(-2,1,2),若2
a
-
b
b
垂直,则|
a
|等于(  )
A、
5
3
2
B、
21
2
C、
37
2
D、
3
5
2
分析:利用向量垂直关系,2
a
-
b
b
垂直,则(2
a
-
b
)•
b
=0,即可得出.
解答:解:∵
a
=(1,n,2),
b
=(-2,1,2),
∴2
a
-
b
=(4,2n-1,2),
∵2
a
-
b
b
垂直,
∴(2
a
-
b
)•
b
=0,
∴-8+2n-1+4=0,
解得,n=
5
2

a
=(1,
5
2
,2)

|
a
|=
12+22+(
5
2
)2=
3
5
2

故选D.
点评:本题考查的知识点是向量的数量积判断向量垂直,其中根据两向量垂直数量积为0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网