题目内容
【题目】有2008名学生参加大型公益活动.若有两名学生互相认识,则将这两名学生看作一个合作小组.
(1)求合作小组数目的最小值,使得无论学生认识的情况如何,都存在三名学生,他们两两都在一个合作小组;
(2)若合作小组数目为,证明:存在四名学生、、、,使得和、和、和、和分别为一个合作小组.
【答案】(1) (2)见解析
【解析】
(1)设.
下面证明:.
将学生分为两大组,每大组中有名学生,且每大组中的学生互相不认识,而每个学生都和另外一个大组中的每个学生认识,则可以组成个合作小组,但是不存在三名学生,他们两两都在一个合作小组.
若有个合作小组,设学生认识的学生最多,且认识个学生,分别设为,,…,.
若存在、满足与互相认识,则、、满足条件;
若,,…,中任意两名学生都不在一个合作小组,则合作小组的数目不超过.矛盾.
因此,.
(2)设,,名学生分别为,,…,,他们认识学生的数目分别为,,…,,则.
考虑每个学生认识的学生中所有可能的两个小组,其总数为
.
所以,存在一个两人小组和,他们都认识和.
【题目】某中学举行“新冠肺炎”防控知识闭卷考试比赛,总分获得一等奖、二等奖、三等奖的代表队人数情况如表,其中一等奖代表队比三等奖代表队多10人.该校政教处为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插抽奖活动.并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中二等奖代表队有5人(同队内男女生仍采用分层抽样)
名次 性别 | 一等奖 代表队 | 二等奖 代表队 | 三等奖 代表队 |
男生 | ? | 30 | ◎ |
女生 | 30 | 20 | 30 |
(1)从前排就坐的一等奖代表队中随机抽取3人上台领奖,用X表示女生上台领奖的人数,求X的分布列和数学期望E(X).
(2)抽奖活动中,代表队员通过操作按键,使电脑自动产生[﹣2,2]内的两个均匀随机数x,y,随后电脑自动运行如图所示的程序框图的相应程序.若电脑显示“中奖”,则代表队员获相应奖品;若电脑显示“谢谢”,则不中奖.求代表队队员获得奖品的概率.
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生 育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上统计数据填下面2乘2列联表,并问是否有99的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合计 |
(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:P