题目内容

20.若x,y满足约束条件$\left\{{\begin{array}{l}{2x+y≥8}\\{0≤x≤3}\\{0≤y≤6}\end{array}}\right.$,则z=x+y的最小值为(  )
A.5B.6C.7D.9

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最小,此时z最小.
由$\left\{\begin{array}{l}{x=3}\\{2x+y=8}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即A(3,2),
代入目标函数z=x+y得z=3+2=5.
即目标函数z=x+y的最小值为5.
故选:A.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网