题目内容
设x1,x2(x1<x2)是函数f(x)=
x3+
x2-(2b2+1)ax,(a>0)的两个极值点.
(1)若x1=-2,x2=1,求a,b的值;
(2)若x1≤x≤x2,且x2=a,不等式6f(x)+11a2≥0恒成立,求实数b的取值范围;
(3)若x12+x22=6+4b2,且b>0,设an=
,Tn为数列an的前n项和,求证:Tn<4.
a |
3 |
b |
2 |
(1)若x1=-2,x2=1,求a,b的值;
(2)若x1≤x≤x2,且x2=a,不等式6f(x)+11a2≥0恒成立,求实数b的取值范围;
(3)若x12+x22=6+4b2,且b>0,设an=
4a |
f′(n)+2a(b2+1) |
(1)∵函数f(x)=
x3+
x2-(2b2+1)ax,(a>0)
∴f'(x)=ax2+bx-(2b2+1)a(2分)
依题意x1=-2,x2=1是方程ax2+bx-(2b2+1)a=0的两根
则-
=-1,-
=-2
解之可得:a=b=
(4分)
(2)由(1)f'(x)=ax2+bx-(2b2+1)a>0得x>x1或x<x2
∴f(x)在(x1,x2)上单调递减
∴x1≤x≤x2时,f(x)≥f(x2)=f(a)(5分)
由题f'(a)=a3+ba-(2b2+1)a=0即a2=2b2-b+1(6分)
若x1≤x≤x2,且x2=a,不等式6f(x)+11a2≥0恒成立?6f(a)+11a2≥0(7分)
?2a4+3ba2-6(2b2+1)a2+11a2≥0?2a2+3b-12b2+5≥0?2(2b2-b+1)+3b-12b2+5≥0?8b2-b-7≤0?-
≤b≤1
故实数b的取值范围为[-
,1](9分)
(3)依题意x1,x2是方程ax2+bx-(2b2+1)a=0的两根,则x1+x2=-
,x1x2=-
而x12+x22=(x1+x2)2-2x1x2
∴(-
)2+2
=6+4b2∴b2=4a2(10分)
又a>0,b>0,
∴b=2a而f'(n)=an2+bn-(2b2+1)a=an2+2an-(8a3+a)
∴an=
=
=
(11分)
a |
3 |
b |
2 |
∴f'(x)=ax2+bx-(2b2+1)a(2分)
依题意x1=-2,x2=1是方程ax2+bx-(2b2+1)a=0的两根
则-
b |
a |
(2b2+1)a |
a |
解之可得:a=b=
| ||
2 |
(2)由(1)f'(x)=ax2+bx-(2b2+1)a>0得x>x1或x<x2
∴f(x)在(x1,x2)上单调递减
∴x1≤x≤x2时,f(x)≥f(x2)=f(a)(5分)
由题f'(a)=a3+ba-(2b2+1)a=0即a2=2b2-b+1(6分)
若x1≤x≤x2,且x2=a,不等式6f(x)+11a2≥0恒成立?6f(a)+11a2≥0(7分)
?2a4+3ba2-6(2b2+1)a2+11a2≥0?2a2+3b-12b2+5≥0?2(2b2-b+1)+3b-12b2+5≥0?8b2-b-7≤0?-
7 |
8 |
故实数b的取值范围为[-
7 |
8 |
(3)依题意x1,x2是方程ax2+bx-(2b2+1)a=0的两根,则x1+x2=-
b |
a |
(2b2+1)a |
a |
而x12+x22=(x1+x2)2-2x1x2
∴(-
b |
a |
(2b2+1)a |
a |
又a>0,b>0,
∴b=2a而f'(n)=an2+bn-(2b2+1)a=an2+2an-(8a3+a)
∴an=
4a |
f′(n)+2a(b2+1) |
4a |
an2+2an-(8a3+a)+8a3+2a |
4 |
n2+2n+1 |
|
练习册系列答案
相关题目