题目内容

中,分别是角A,B,C的对边,且满足
(1)求角B的大小;
(2)若最大边的边长为,且,求最小边长.
(1);(2)

试题分析:(1)因为在中,分别是角A,B,C的对边,且满足,所以通过化简可得一个关于的等式.再结合余弦定理即可求得结论.
(2)由(1)即最大边的边长为可得边最大,又根据,可得.所以可知边最小.由于已知一边一角,另两边存在等量关系,所以利用余弦定理即可求得最小边的值.本小题利用正弦定理同样是可以的.
试题解析:(Ⅰ)由整理得
, ∴
,∴.            6分
(2)∵,∴最长边为, ∵,∴
为最小边,由余弦定理得,解得
,即最小边长为 .          12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网