题目内容
【题目】(1)设.
①求;
②求;
③求;
(2)求除以9的余数.
【答案】(1)16,256,15;(2)7
【解析】试题分析:(1)利用赋值法,令,求;(2)令x=-1,与(2)相加求;,;
③令,结合二项式系数和即可求出结果;
(2)利用二项式系数和,把 分解为9的倍数形式,再求对应的余数.
试题解析:(1)①令x=1,得a0+a1+a2+a3+a4=(3-1)4=16.
②令x=-1得,a0-a1+a2-a3+a4=(-3-1)4=256,
而由(1)知a0+a1+a2+a3+a4=(3-1)4=16,两式相加,得a0+a2+a4=136.
③令x=0得a0=(0-1)4=1,得a1+a2+a3+a4=a0+a1+a2+a3+a4-a0=16-1=15.
(2)解 S=C+C+…+C=227-1
=89-1=(9-1)9-1=C×99-C×98+…+C×9-C-1
=9(C×98-C×97+…+C)-2
=9(C×98-C×97+…+C-1)+7,
显然上式括号内的数是正整数.
故S被9除的余数为7.
【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:
A型车
出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
B型车
出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
(1)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(2)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(3)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.