题目内容
【题目】设F是椭圆C:(a>b>0)的一个焦点,P是椭圆C上的点,圆x2+y2=与线段PF交于A,B两点,若A,B三等分线段PF,则椭圆C的离心率为( )
A.B.
C.D.
【答案】D
【解析】
取线段PF的中点H,连接OH,OA,由题意可得OH⊥AB,设|OH|=d,根据椭圆的定义以及在Rt△OHA中,可得a=5d,在Rt△OHF中,利用勾股定理即可求解.
如图,取线段PF的中点H,连接OH,OA.
设椭圆另一个焦点为E,连接PE.
∵A,B三等分线段PF,∴H也是线段AB的中点,即OH⊥AB.
设|OH|=d,则|PE|=2d,|PF|=2a-2d,|AH|=.
在Rt△OHA中,|OA|2=|OH|2+|AH|2,解得a=5d.
在Rt△OHF中,|FH|=,|OH|=,|OF|=c.
由|OF|2=|OH|2+|FH|2,
化简得17a2=25c2,.
即椭圆C的离心率为.
故选:D.
练习册系列答案
相关题目
【题目】甲、乙两台机床生产同一型号零件,记生产的零件的尺寸为,相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质里检测得到下表数据:
尺寸 | ||||||
甲机床零件频数 | 2 | 3 | 20 | 20 | 4 | 1 |
乙机床零件频数 | 3 | 5 | 17 | 13 | 8 | 4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)根据已知条件完成下面的列联表,并据此数据回答:是否有的把握认为“零件优等与否和所用机床有关”?
甲机床 | 乙机床 | 合计 | |
优等品 | |||
非优等品 | |||
合计 |