题目内容

(本小题满分12分)如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°.

(1)证明:∠PBC=90°;
(2)若PB=3,求直线AB与平面PBC所成角的正弦值.

(1)取AD中点O,连OP、OB,由已知得:OP⊥AD,OB⊥AD,
又OP∩OB=O,∴AD⊥平面POB,∵BC∥AD,∴BC⊥平面POB,∵PB平面POB,
∴BC⊥PB,即∠PBC=90°.
(2)如图,

以O为坐标原点,建立空间直角坐标系O-xyz,则A(1,0,0),B(0,,0),C(-1,,0),由PO=BO=,PB=3,得∠POB=120°,∴∠POz=30°,∴P(0,-),则=(-1,,0),
=(-1,0,0),=(0,,-),设平面PBC的法向量为n=(x,y,z),则,取z=,则n=(0,1,),
设直线AB与平面PBC所成的角为θ,则sinθ=|cos〈,n〉|=.

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网