题目内容
18.无理数与无理数之和是无理数…大前提$\sqrt{2}$和$\sqrt{3}$都是无理数…小前提
所以$\sqrt{2}$+$\sqrt{3}$也是无理数…结论
以上推理过程中的错误为( )
A. | 大前提 | B. | 小前提 | C. | 结论 | D. | 无错误 |
分析 要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.
解答 解:演绎推理:无理数与无理数之和是无理数…大前提;$\sqrt{2}$和$\sqrt{3}$都是无理数…小前提;所以$\sqrt{2}$+$\sqrt{3}$也是无理数…结论,中:
大前提:无理数与无理数之和是无理数,错误;
小前提:$\sqrt{2}$和$\sqrt{3}$都是无理数,正确;
结论$\sqrt{2}$+$\sqrt{3}$也是无理数也正确,
故只有大前提错误,
故选:A.
点评 题考查演绎推理的基本方法,考查实数的性质,这种问题不用进行运算,只要根据所学的知识,判断这种说法是否正确即可,是一个基础题.
练习册系列答案
相关题目
8.在△ABC中,$c=\sqrt{2}$,acosC=csinA,若当a=x0时的△ABC有两解,则x0的取值范围是( )
A. | $(1,\sqrt{2})$ | B. | $(1,\sqrt{3})$ | C. | $(\sqrt{3},2)$ | D. | $(\sqrt{2},2)$ |
6.设正实数x,y,z满足x2-7xy+16y2-z=0,则当$\frac{z}{xy}$取得最小值时,x+2y-z的最大值为( )
A. | 0 | B. | $\frac{9}{8}$ | C. | $\frac{9}{4}$ | D. | 2 |
13.散点图在回归分析过程中的作用是( )
A. | 查找个体个数 | B. | 粗略判断变量是否线性相关 | ||
C. | 探究个体分类 | D. | 比较个体数据大小关系 |
10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),两个焦点分别为F1、F2,若在第一象限内双曲线上存在一点P,使得在△PF1F2中,∠PF1F2=30°,∠PF2F1=90°,则此双曲线的渐近线方程为( )
A. | $y=±\frac{{\sqrt{2}}}{2}x$ | B. | $y=±\sqrt{2}x$ | C. | $y=±\sqrt{3}x$ | D. | y=±2x |
7.某校有6间不同的电脑室,每天晚上至少开放2间,求不同安排方案的种数,现有四位同学分别给出下列四个结果①$C_6^2$;②26-7;③$C_6^3+2C_6^4+C_6^5+C_6^6$,其中正确的结论是( )
A. | ① | B. | ②与③ | C. | ①与② | D. | ①②③ |
8.随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下2×2列联表:
(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为“性别与是否读营养说明之间有关系”?
(2)若采用分层抽样的方法从读营养说明的学生中随机抽取3人,则男生和女生抽取的人数分别是多少?
(3)在(2)的条件下,从中随机抽取2人,求恰有一男一女的概率.
读营养说明 | 不读营养说明 | 合计 | |
男 | 16 | 4 | 20 |
女 | 8 | 12 | 20 |
合计 | 24 | 16 | 40 |
(2)若采用分层抽样的方法从读营养说明的学生中随机抽取3人,则男生和女生抽取的人数分别是多少?
(3)在(2)的条件下,从中随机抽取2人,求恰有一男一女的概率.