题目内容
(本
小题满分12分)在△ABC中, a, b, c分别为角A, B, C所对的边,
且4sin2
-cos2A=
.
(1)求角A的度数;
(2)若a=
, b+c=3,求b和c的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318575485372.gif)
且4sin2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754869311.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754931219.gif)
(1)求角A的度数;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318575505665.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755072229.gif)
解:(1)由题设
得2[1-cos(B+C)]-(2cos2A-1)=
,
∵ cos(B+C)=-cosA,∴ 2(1+cosA)-2cos2A+1=
,
整理得(2cosA-1)2=0,∴ cosA=
,∴ A=60°.
(
2)∵ cosA=
=
=
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755555488.gif)
∴
=
,∴ bc=2. 又∵ b+c=3,∴ b=1, c=2或b=2,
c=1.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755087112.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754931219.gif)
∵ cos(B+C)=-cosA,∴ 2(1+cosA)-2cos2A+1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754931219.gif)
整理得(2cosA-1)2=0,∴ cosA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755430222.gif)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318575485372.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755493525.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755524665.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755540532.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755555488.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755555488.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185755430222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318575560272.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目