题目内容
某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.
当过点M(,),利润总额z=900x+600y取最大值130000元.
试题分析:解:设生产甲、乙两种棉纱分别为x、y吨,利润总额为z,
则z=900x+600y 2
且 4
作出以上不等式组所表示的平面区域(如图),
即可行域. 6
作直线l:900x+600y=0,即3x+2y=0,
把直线l向右上方平移至过直线2x+y=250与
直线x+2y=300的交点位置M(,), 10
此时所求利润总额z=900x+600y取最大值130000元. 12
点评:主要是考查了线性规划的最优解的运用,属于基础题。
练习册系列答案
相关题目