题目内容
18.某手机销售商对某市市民进行手机品牌认可度的调查,在已购买某品牌手机的500名市民中,随机抽样100名,按年龄进行统计的频率分布表和频率分布直方图如下:分组(岁) | 频数 | 频率 |
[20,25) | 5 | 0.05 |
[25,30) | 20 | 0.2 |
[30,35) | ① | 0.35 |
[35,40) | 30 | 0.3 |
[40,45) | 10 | ② |
合计 | 100 | 1.0 |
(2)在抽出的这100市民中,按分层抽样抽取20人参加宣传活动,从20人中随机选取2人各赠送一部手机,设这两名市民中年龄低于30岁的人数为X,求X的分布列及数学期望.
分析 (1)利用频率分布表和频率分布直方图能求出频率分布表中的①②位置应填什么数,并补全频率分布直方图,再根据频率分布直方图能统计出这500名志愿者得平均年龄.
(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及数学期望.
解答 解:(1)由题意知频率分布表中的①位置应填数字为:100-5-20-30-10=35,
②位置应填数字为:$\frac{30}{100}$=0.30.
补全频率分布直方图,如右图所示.
平均年龄估值为:$\frac{1}{2}$(45×0.05+55×0.2+65×0.35+75×0.3+85×0.1)=33.5(岁).
(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{15}^{2}}{{C}_{20}^{2}}$=$\frac{21}{38}$,
P(X=1)=$\frac{{C}_{5}^{1}{C}_{15}^{1}}{{C}_{20}^{2}}$=$\frac{15}{38}$,
P(X=2)=$\frac{{C}_{5}^{2}}{{C}_{20}^{2}}$=$\frac{2}{38}$,
∴X的分布列为:
X | 0 | 1 | 2 |
P | $\frac{21}{38}$ | $\frac{15}{38}$ | $\frac{2}{38}$ |
点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
练习册系列答案
相关题目
6.已知定义在R上的偶函数f(x)满足,当x≥0时,f(x)=x3+x2,则不等式f(x-1)>f(2x)的解集为( )
A. | (-3,1) | B. | (-1,$\frac{1}{3}$) | C. | (-∞,-1)∪($\frac{1}{3}$,+∞) | D. | (-∞,-$\frac{1}{3}$)∪(1,+∞) |
3.已知实数a满足|a|<2,则事件“点M(1,1)与点N(2,0)分别位于直线l:ax-2y+1=0两侧”的概率为( )
A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{4}$ |