题目内容

【题目】正项等比数列{an}中的a1 , a4031是函数f(x)= x3﹣4x2+6x﹣3的极值点,则 =( )
A.1
B.2
C.
D.﹣1

【答案】A
【解析】解:f(x)= x3﹣4x2+6x﹣3,

∴f′(x)=x2﹣8x+6=0,

∵a1,a4031是函数f(x)= x3﹣4x2+6x﹣3的极值点,

∴a1a4031=6,又an>0,

∴a2016= =

=1.

所以答案是:A.

【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值,以及对等比数列的通项公式(及其变式)的理解,了解通项公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网