搜索
题目内容
设函数=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数
,取函数f(x)=2
-|x|
。当k=
时,函数f
k
(x)的单调递增区间为
[ ]
A.(-∞,0)
B.(0,+∞)
C.(-∞,-1)
D.(1,+∞)
试题答案
相关练习册答案
C
练习册系列答案
小学生聪明屋寒暑假作业系列答案
寒假作业二十一世纪出版社系列答案
寒假作业上海科学技术出版社系列答案
全优寒假作业系列答案
轻松寒假复习加预习系列答案
成长记初中假期作业寒假云南教育出版社系列答案
强力推荐精品教辅高中新课标快乐假期寒系列答案
起跑线系列丛书新课标寒假作业系列答案
期末寒假一本通系列答案
期末寒假衔接快乐驿站假期作业新疆青少年出版社系列答案
相关题目
12、设函数f(x)在区间[a,b]上连续,若满足
f(a)•f(b)≤0
,则方程f(x)=0在区间[a,b]上一定有实数根.
设函数f(x)在R上有定义,下列函数:①y=-|f(x)|;②y=|x|•f(x
2
);③y=-f(-x);④y=f(x)+f(-x)
其中偶函数的有
②④
②④
.(写出所有正确的序号)
已知f
1
(x)=3
|x-1
|,f
2
(x)=a•3
|x-2
|,(x∈R,a>0).函数f(x)定义为:对每个给定的实数x,
f(x)=
f
1
(x)
f
1
(x)≤
f
2
(x)
f
2
(x)
f
1
(x)>
f
2
(x)
(1)若f(x)=f
1
(x)对所有实数x都成立,求a的取值范围;
(2)设t∈R,t>0,且f(0)=f(t).设函数f(x)在区间[0,t]上的单调递增区间的长度之和为d(闭区间[m,n]的长度定义为n-m),求
d
t
;
(3)设g(x)=x
2
-2bx+3.当a=2时,若对任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求实数b的取值范围.
(2013•保定一模)设函数f(x)在R上是可导的偶函数,且满足f (x-1)=-f (x+1),则曲线y=f (x)在点x=10处的切线的斜率为( )
A.-1
B.0
C.1
D.2
已知函数f(x)=e
x
+ax
2
+bx.
(Ⅰ)当a=0,b=-1时,求f(x)的单调区间;
(Ⅱ)设函数f(x)在点P(t,f(t))(0<t<1)处的切线为l,直线l与y轴相交于点Q.若点Q的纵坐标恒小于1,求实数a的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总