题目内容

13.设F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为$\frac{\sqrt{3}}{3}$.

分析 通过∠F1PQ=60°,|PF1|=|PQ|,可得直线PQ过右焦点F2且垂直于x轴,从而△F1PQ为等边三角形,△F1PF2为直角三角形,计算即可•

解答 解:∵过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,
∴直线PQ过右焦点F2且垂直于x轴,即△F1PQ为等边三角形,△F1PF2为直角三角形,
∵F1P+F1Q+PQ=4a,∴F1P+PF2=2a,
又∵F1P=2PF2,F1F2=2c,
∴F1P=$\frac{4}{3}a$,PF2=$\frac{2}{3}a$,
由勾股定理,得$(\frac{4}{3}a)^{2}=(\frac{2}{3}a)^{2}+(2c)^{2}$,即a2=3c2
∴e=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$$\frac{\sqrt{3}}{3}$,
故答案为:$\frac{\sqrt{3}}{3}$•

点评 本题考查椭圆的简单性质,勾股定理,挖掘隐含信息“直线PQ过右焦点F2且垂直于x轴”是解决本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网