题目内容
【题目】在平面直角坐标系中,圆为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线l的极坐标方程为.
分别求圆的极坐标方程和曲线的直角坐标方程;
设直线交曲线于两点,曲线于两点,求的长;
为曲线上任意一点,求的取值范围.
【答案】(1),;(2);(3).
【解析】
消去参数得到普通方程,利用这个是可得到的直角坐标,直接利用转换关系对极坐标方程进行转换可得到曲线的极坐标方程;利用方程组和两点间的距离公式分别求出,相减求出结果.利用向量的数量积和三角函数关系式的恒等变换及正弦型函数的性质可求出结果.
圆为参数,
转换为直角坐标方程为:,
,利用
转换为极坐标方程为:,即.
曲线的极坐标方程为,
转化为,
利用整理得:.
直线l的极坐标方程为.
转换为直角坐标方程为:,
由于直线交曲线于两点,
则:,
解得:或,
所以:,
同理:直线交曲线于两点,
则:,
解得:或.
所以:,
所以:.
由于,
则,
P为曲线上任意一点,,
则:,
所以,
的范围是.
练习册系列答案
相关题目