题目内容
观察下列各式:,,,,,可以得出的一般结论是
解析
如图,若射线上分别存在点与,则三角形面积之比 ,如图若不在同一平面内的射线和上分别存在点点和点,则三棱锥体积之比
(1)由“若则”类比“若为三个向量则”(2)在数列中,猜想(3)在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”(4)上述四个推理中,得出的结论正确的是______.(写出所有正确结论的序号)
如图,在梯形ABCD中,AD//BC,AC、BD相交于O,记△BCO、△CDO、△ADO的面积分别为S1、S2、S3,则的取值范围是 .
在刚刚结束的全国第七届全国农运会期间,某体育场馆橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第堆最底层(第一层)分别按图1所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第堆第层就放一个乒乓球,以表示这堆的乒乓球总数,则;(的答案用表示)
将正整数12分解成两个正整数的乘积有,,三种,其中是这三种分解中,两数差的绝对值最小的,我们称为12的最佳分解.当是正整数的最佳分解时,我们规定函数,例如.关于函数有下列叙述:①,②,③,④.其中正确的序号为 (填入所有正确的序号).
对于,经计算,,猜想当时,有__________________________.
等差数列有如下性质:若数列为等差数列,则当时,数列 也是等差数列;类比上述性质,相应地,若数列是正项等比数列,当_ 时,数列也是等比数列.
在解决问题:“证明数集没有最小数”时,可用反证法证明.假设是中的最小数,则取,可得:,与假设中“是中的最小数”矛盾!那么对于问题:“证明数集没有最大数”,也可以用反证法证明.我们可以假设是中的最大数,则可以找到 ▲ (用,表示),由此可知,,这与假设矛盾!所以数集没有最大数.